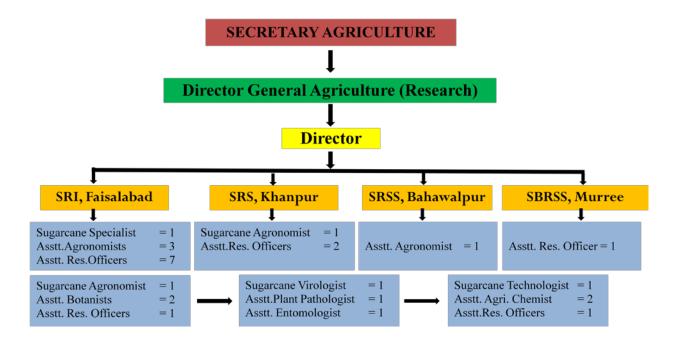
SUGAR CANE R & D PRESENT STATUS & FUTURE PROSPECTS

(Presented in PSST Agricuture workshop on 16-06-2014 at Faisalabad)

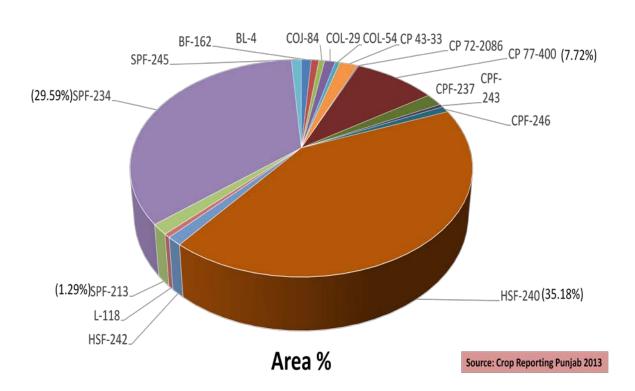
By:

DR. MUHAMMAD AFZALSUGARCANE SPECIALIST
SUGARCANE RESEARCH INSTITUTE
FAISALABAD


BRIEF HISTORY

■ Establishment of Sugarcane Research	1024
Station, Lyallpur	1934
■ Permanent feature of Agri. Department	1949
under Punjab Agriculture College, Lyallpur	1343
■ Separation of AARI from University and	1962
attachment of Sugarcane Section	1902
■ Up-gradation of Sugarcane Section to	1079
Sugarcane Research Institute, Faisalabad	1978

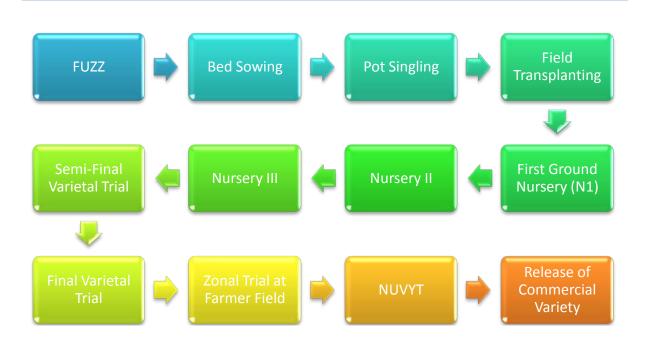
OBJECTIVES


- **✓** Cane Variety development for:
 - O High cane yield
 - O High sugar recovery
 - Good ratoon
- **✓ Cane Production Technology**
- **✓ Sugarcane Technology**
- ✓ Sugarcane Diseases and Pests Control

ORGANOGRAM

ACHIEVEMENTS

VARIETAL COMPOSITION OF SRI VARIETIES IN PUNJAB 2013-14



SUGARCANE IN PAKISTAN 2012-13 vs. 2013-14

Provinces	Su	igarcane ard (000 ha)	ea	Sugarcane production (M.T.)				Sugarcane yield (t ha ⁻¹)		Sugar recovery
	2012-13	2013-14	Change %	2012-13	2013-14	Change %	2012-13	2013-14	Change %	(%)
Punjab	767.7	723.6	-5.7	42.98	40.84	-4.97	56.0	56.4	0.8	9.92
Sindh	253.7	297.6	17.30	15.96	17.37	8.80	62.9	58.4	-7.2	10.49
КРК	106.7	107.7	0.9	4.77	4.82	1.1	44.7	44.8	0.2	9.23
Baluchistan	0.7	0.7	0.7	0.31	0.32	2.2	45.0	46.0	2.2	
Pakistan	1128.8	1129.6	0.1	63.75	63.07	-1.1	56.5	55.8	-1.1	9.88

Source: Ministry of Food and Agriculture & PSMA 2013

PROCESS

APPROVED VARIETIES OF SRI, FSD

Sr. #	Varieties	Year of Release	Av. Yield (t ha ⁻¹)	Sugar Recovery (%)	Sugar Yield (t ha ⁻¹)			
1947-1977 (30 years)								
1.	CoL-29	1954	70	10.10	7.07			
2.	CoL-44	1954	75	8.93	6.69			
3.	CoL-54	1963	75	9.63	7.22			
4.	BL-19	1966	85	9.49	8.00			
5.	BL-4	1968	85	10.34	8.79			
6.	L-116	1973	75	10.81	8.11			
7.	L-118	1975	83	8.23	6.83			

Sr. #	Varieties	Year of Release	Av. Yield (t ha ⁻¹)	Sugar Recovery (%)	Sugar Yield (t ha ⁻¹)			
1978-199	1978-1998 (20 years)							
8.	Triton	1983	85	10.10	8.58			
9.	BF-162	1990	90	10.35	9.31			
10.	CP43-33	1996	80	11.69	9.35			
11.	CP72-2086	1996	85	12.35	10.49			
12.	CP77-400	1996	90	11.90	10.72			

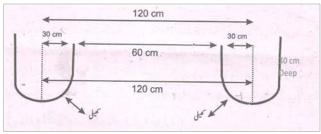
Sr. #	Varieties	Year of Release	Av. Yield (t ha ⁻¹)	Sugar Recovery (%)	Sugar Yield (t ha ⁻¹)
2000-2	013 (13 years)				
13.	CoJ-84	2000	90	9.80	8.82
14.	SPF-213	2000	90	10.50	9.45
15.	CPF-237	2000	95	12.50	11.87
16.	HSF-240	2002	95	11.70	11.11
17.	SPF-234	2002	100	11.60	11.60
18.	SPF-245	2004	100	11.00	11.00
19.	HSF-242	2006	102	12.50	12.75
20.	CPF-243	2006	102	12.55	12.80
21.	CPF-246	2011	105	12.00	12.60
22.	CPF-247	2011	105	12.25	12.86
23.	CPF-248	2013	113	12.71	14.32

PIPELINE VARIETIES OF SRI, FSD

Sr. #	Name of clones	Av. Yield (t ha ⁻¹)	Yield potential (t ha ⁻¹)	Sugar Recovery (%)	Remarks
1.	S2003-US 127	106	125	12.60	Early
2.	S2003-US 633	105	130	13.50	Early
3.	S2003-US 704	107	135	12.80	Medium
4.	S2003-US 778	105	130	12.45	Medium
5.	S2005-US 54	107	135	12.60	Early
6.	S2006-US 272	107	135	12.60	Early
7.	S2006-US 658	106	125	12.40	Medium

COMPARISON OF CANE YIELD AND SUGAR RECOVERIES OF PAK PUNJAB & INDIAN PUNJAB

	Pak Punjab		Indian Punjab		
Year	Cane Yield (t ha ⁻¹)	Sugar Recovery (%)	Cane Yield (t ha ⁻¹)	Sugar Recovery (%)	
1951-1960	31.80	8.09	32.91	9.30	
1961-1970	35.15	8.17	34.86	8.42	
1971-1980	36.13	8.37	50.02	8.88	
1981-1990	36.20	8.27	60.65	9.85	
1991-1995	39.20	8.23	58.80	9.25	
1995-2000	42.80	7.92	61.60	8.84	
2001-2005	47.30	8.60	60.70	9.67	
2006-2010	48.50	8.80	58.60	9.33	
2011-2012	61.20	9.41	59.80	8.70	


SUCCESS STORY OF VARIETY EVOLUTION AT SRI

International collaboration:

- ✓ Varieties of CP origin like CPF-246, CPF-247, CPF-248 are very successful in Pakistan, fuzz imported from U.S.A.
- ✓ Varieties like CP77-400, CP72-2086 & CP43-33 were directly imported from U. S. A.
- ✓ Varieties of SP origin like SPF-213 is successful in all Punjab and SPF-234, a good performers in Southern Punjab, fuzz imported from Brazil
- Local collaboration:
 - ✓ HSF-240 is a joint collaborative effort of Habib Sugar Mills and SRI Faisalabad

DEEP TRENCH PLANTING TECHNIQUE

Water saving "47% Yield increase "22%

ALTERNATE SKIP IRRIGATION Third Irrigation Second Irrigation First Irrigation Do not irrigate here WATER SAVED = 25%

CHALLENGES FOR SUGARCANE RESEARCH & DEVELOPMENT

Fuzz Production Low Cane Yield Low Sugar Recovery

CAUSES OF LOW CANE YIELD

- Improper land preparation
- Lack of seed propagation facilities
- Use of low seed rate
- Planting time
- Planting method
- Inadequate and imbalanced fertilizer use
- Costly inputs
- Scarcity of irrigation water
- Weed infestation
- Poor plant protection measures
- Sowing of unapproved varieties
- Poor management of ratoon crop

CAUSES OF LOW SUGAR RECOVERY

- Sowing of low sugar varieties
- Payment on weight basis
- Supply of staled and un-cleaned cane
- Late application of fertilizer
- Application of water before harvesting
- Un-scheduled supply of cane to the mills
- Supply of cane to mills is not according to the maturity schedule
- Poor development work by the mills
- · Appointment of un-qualified staff
- Late planting
- Supply of diseased and insect infected cane
- Inefficient processing

HOW SRI ADDRESSING?

- Fuzz Production
 - ✓ Collaboration with Sri-Lanka for cane fuzz production & import
 - ✓ Import of fuzz from Mauritius, Philippines, U.S.A., Barbados & Bangladesh
 - ✓ Exchange of cane germplasm with Sri-Lanka, Mauritius & Philippines
- Low Cane Yield
 - ✓ Approval of high cane yielding varieties
 - ✓ Improved production technology
- Low Sugar Recovery
 - √ Consolidated variety selection program
 - √ High sugar recovery germplasm introduction from foreign countries

GROWING SEEDLINGS FROM CANE FUZZ – A BASE FOR NEW VARIETY EVOLUTION

INTERNATIONAL COLLABORATION

- Sugarcane Field Station, Canal Point, USA
- Sugarcane Research Institute, **Sri Lanka**
- Philippine Sugar Research Institute, Philippine
- Mauritius Sugar Industry Research Institute, Mauritius
- South African Sugarcane Research Institute, South Africa
- ■Bangladesh Sugarcane Research Institute (BSRI), Bangladesh
- ■West Indies Central Sugar Cane Breeding Station, Barbados

PARB PROJECTS AT SRI

Title	Estimated cost (Rs. Millions)	Status
Sugarcane plant improvement through traditional and modern breeding technologies	27.836	On-going
Development of transgenic sugarcane (Saccharum officinarum L.) against major abiotic stresses	19.587	On-going
Genetic Improvement of Sugarcane for herbicide and borer resistance	22.350	On-going

OVERALL IMPACT IN PUNJAB

Comparison	1999-00	2012-13	% increase
Area (000 ha)	672.10	767.67	12.45
Production (million tones)	25.00	42.98	41.83
Yield (tones/ha)	37.20	56.40	34.04
Recovery (%)	7.82	9.92	21.17

Source: PSMA Report 2013

AREA UNDER SRI VARIETIES

Punjab = 99%

Sindh = 80%

KPK = 95%

SUGARCANE PRODUCERS IN ASIA

#	Country	Area (000 ha)	Production (000 t)	Yield (t ha ⁻¹)	Crop Duration (Months)	Stripped Cane Yield/Unit time
1	Philippine	433	30000	69.24	18	69.24
2	India	5090	347870	68.34	12-18	68.34
3	Sri-Lanka	13	800	63.49	18	63.49
4	Indonesia	458	26342	57.68	18	57.68
5	Pakistan	1046	58038	55.49	10-15	79.91
6	Lao DPR	21	1056	51.52	18	51.52
7	Nepal	65	2930	45.45	18	45.45
8	Bangladesh	118	4850	41.10	18	41.10
9	Cambodia	17	365	21.47	18	21.47
	Ranking	2	2	5	1.81	1

Source: Ministry of Food and Agriculture

HOW TO ADDRESS?

- Provision of resources for efficient R & D
- Strengthening of infrastructure for effective work
- Bilateral collaboration with other countries for import of fuzz/cane setts and exchange of germplasm
- Varietal exchange program with other sugarcane research institutes with in Pakistan
- Foreign trainings of research scientists, awareness seminars and workshops

FUTURE STRATEGIES

- Continuity of fuzz production from Sri-Lanka of desired characteristics
- Varietal exchange program with U.S.A., Brazil, Mauritius, Australia
- Import of elite germplasm from U.S.A., Brazil, Australia, Thailand, etc.
- Evaluation of site specific varieties
- Development of site specific production technology
- Establishment of quarantine station at Pail, Murree
- Establishment of Sugarcane Breeding Institute in Coastal area
 Establishment of Cane Seed Production Farm at Chak Jhumra
- Sugarcane maximization program at mill level

SUGARCANE MAXIMIZATION

INCREASING CANE YIELD FOR FARMERS

- Use of biotic & abiotic stress tolerant approved varieties through Biotechnology
- Use of organic fertilizer sources to reduce cost of production
- Use of water conservation technologies
- Use of farm machinery to reduce labor cost to enhance precision & efficiency
- Availability of subsidized farm implements, solar powered tube wells, bio-gas plants, and other inputs

REDUCED COSTS OF PRODUCTION

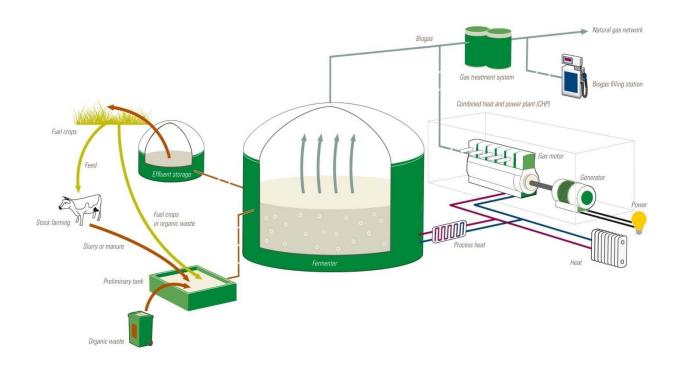
 IRRIGATION (Improve WUE)

• FERTILIZERS (Improve FUE)

 HARVESTING (Reduce Losses)

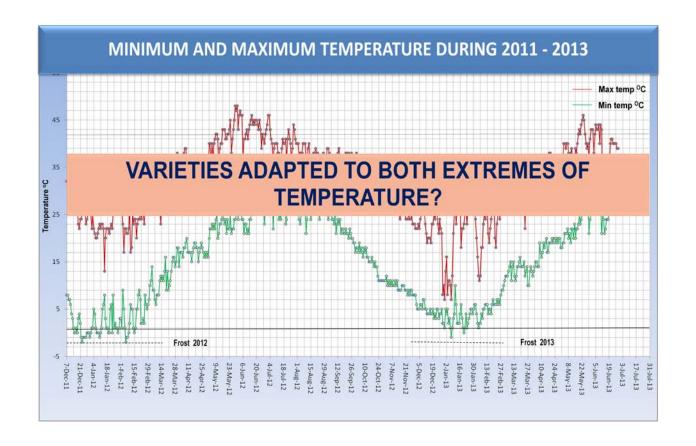
Water - a scarce commodity

Costly pumping of water due to


rising cost of diesel & load-shedding

NEED FOR DROUGHT TOLERANT VARIETIES

SOLAR ENERGY—RENEWABLE ENERGY


BIOGAS - RENEWABLE ENERGY

SALT TOLERANT CANE VARIETIES

Control measures are not always available or accessible

Pesticides are costly and their use pose environmental threat and human health hazards

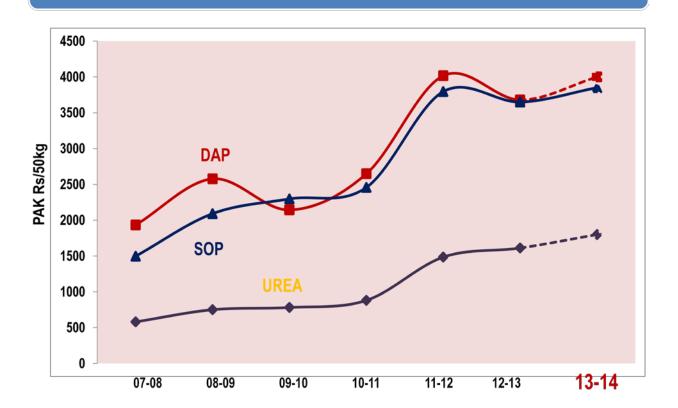
VARIETIES RESISTANT TO PESTS AND DISEASES

BIOLOGICAL CONTROL

- √ Safe and efficient
- √ Long term control
- ✓ Environment friendly
- ✓ Cost effective

Trichogramma for control of sugarcane borers

Chrysoperla for control of whiteflies



LODGING---SERIOUS DISASTER

ERECT CANES RESISTANT TO LODGING

RISING COSTS OF FERTILIZERS

FERTILIZER EQUIVALENCE & COSTS

(COMPOST v/s MINERAL FERTILIZERS)

ORGANIC

16 bags Compost/acre 50kg UREA/acre 25kg SOP/acre

INORGANIC

100kg DAP/acre 100kg SOP/acre 150kg UREA/acre

Rs. 13,000

Rs. 26,000

Economy per acre of Rs. 13,000

Provides equivalent NPK as mineral fertilizer sources

Also contains secondary and micronutrients (Bonus)

Improve SOM status and long term soil fertility (Bonus)

MECHANIZATION OF SUGARCANE HARVEST

Can harvest up to 10 tons ha-1

Adapted to 4 ft and will clean cane from trash and tops

Speed up harvesting

Reduce time between cut and crush

Reduce losses in sugar recovery

INCREASING SUGAR RECOVERY FOR MILLERS

- Varietal Development Program at mill level
- Agro-meteorology studies for site specific variety development
- Establishment of model seed farm at mill level
- Production of organic fertilizer from filter cake
- Strengthening of quality control laboratory

SOP FOR VARIETAL DEVELOPMENT PROGRAM

- ✓ Appointment of Agri. Graduate in each Sugar Mill for development work
- ✓ Supply of approved cane varieties from Chak Jhumra Model Seed Farm to sugar Mills for adaptability & site specific studies
- ✓ Supply of recommended cane varieties to farmers by mills
- ✓ Subsidized supply of inputs including fertilizer, pesticides, etc.
- ✓ Seed and fertilizer loaning to farmers
- ✓ Quality based payment system implementation

BIO-COMPOSTING

VALORIZATION OF MILL BY-PRODUCTS AND ANIMAL WASTES (Pressmud, Ash, Molasses, Manure)

VALORIZATION OF SUGARCANE BIOMASS

Contribution of Sugarcane

- ✓ Enhanced biomass production
- √ Co-generation

MEDIUM TERM OBJECTIVES (5 YEARS)

Target: Av. Cane Yield: 90 t ha⁻¹ Av. Sugar Recovery: 11.00 %

- Approval of 3 to 5 cane varieties from existing germplasm that are superior to varieties in vogue
- Establishment/Strengthening of infrastructure for Sugarcane Research and Development in Punjab
- Aggressive efforts in extension work directly with farmers and through sugar mills to attain Yield and Recovery objectives
- Extra emphasis on education with respect to water use efficiency

Target: Av. Cane Yield: 90 t ha-1 Av. Sugar Recovery: 11.00 %

- Site-specific studies in different agro-ecological zones for variety development and productivity enhancement at mill level
- Extensive efforts for development of seed farms for newly approved varieties
- Valorization of sugar mill by-products for benefit of sugarcane farmers
- Strengthening of international linkages and upgrading subject expertise in Punjab

LONG TERM OBJECTIVES (10 YEAR)

Target: Av. Cane Yield: 110 t ha⁻¹ Av. Sugar Recovery: 13 %

- Significantly expand and strengthen Sugarcane breeding and selection program
- Approval of site-specific varieties and development of production technology for different districts of Punjab
- Production of true seed of desired characteristics in Pakistan
- High fiber variety evolution for co-generation

Target: Av. Cane Yield: 110 t ha⁻¹ Av. Sugar Recovery: 13 %

- Capacity building of scientists
- Introduction of Genetically Modified (GMO) sugarcane varieties tolerant against abiotic stresses like frost, drought, salinity and biotic stresses like disease and insect pests
- Micro-management practices to enhance productivity
- Farm mechanization for sustainable sugarcane production

dr.mafzalgrewal@gmail.com 0300-8770834 041-9200771 www.facebook.com/sugarcaneresearchinstitutefsd