IN THE NAME OF ALLAH THE MOST BENEFICIENT AND MERCIFUL

Tissue culture assisted breeding of sugarcane

Shafquat Yasmeen Senior Scientist Nuclear Institute of Agriculture (NIA),TandoJam

Introduction

- •Considering the environmental conditions of Pakistan where sugarcane breeding is constrained due to the production of non viable fuzz (seed), somaclonal variation can prove to be a useful tool for crop improvement.
- A true understanding of this phenomenon would allow its utilization as a tool for crop improvement programmes.

To induce genetic variability through *in vitro* mutagenesis.
To develop high yielding mutants for better sugar content.
To develop early maturing varieties.

Materials and Methods

Three sugarcane clones viz.

- NIASGS-571, NIA-0819 and NIA-2143 EXPLANT
- Leaf primordia with meristematic tissue
- 70% Absolute alcohol for one minute
- 10% Sodium hypochlorite for 20 minutes
- One month old callus was irradiated with four different doses of gamma radiation (10, 20, 30 and 40Gy)

Callus induction:

MS + 4.00 mg l⁻¹ 2, 4-D

REGENERATION MEDIUM:

MS + 2.00 mg l⁻¹ IBA +2.00 mg l⁻¹ IAA +2.00 mg l⁻¹ Kinetin + 4% sugar.

ROOTING MEDIUM:

- ¹/₂ MS + without hormones
- $\frac{1}{2}$ MS + 2.00 mg l⁻¹ IBA + 4% sugar
- $\frac{1}{2}$ MS + 1.00 mg l⁻¹ IBA + 6% sugar

Callus Induction & Proliferation

571, NIA-0819 and NIA-2143 were used for callus induction. Explants were cultured on Murashige and Skoog medium supplemented with 4mg/l of 2,4-D. Embryogenic callus was proliferated on the same medium. Cultures were incubated at $25\pm 2^{\circ}$ C in dark.

Immature leaf rolls from field grown cultivar of sugarcane genotypes NIASGS-

The callus then regenerated in MS medium containing growth regulators and incubated at $25 \pm 2^{\circ}$ C under a photoperiod of 16h light and 8h dark.

Multiplication & Elongation

The regenerated plantlets were multiplied by continuous sub-culturing in the regeneration medium and were allowed to elongate up to 5-7 inches in length.

Tissue Culture Observations

- 1. Callus induction after gamma radiation doses
- 2 . After one month callus weight (g)
- **3** . Proliferation of callus (g)
- 4. Regeneration of plantlets
- **5**. Number of chlorophyll mutants
- **6** . Number of plantlets
- 7. Root induction

In Vitro Culture in Sugarcane

Table. 1. Effect of different gamma radiation doses on callus induction in sugarcane genotypes

Gamma radiation doses	Callus induction after gamma radiation doses	After one month callus weight bottle ⁻¹ (g)	Callus proliferation
		NIASGS- 571	
Control	1.89 cd	1.16 de	2.26 d
10Gy	2.00 b	1.25 b	2.37 с
20Gy	1.94 bc	1.38 a	2.66 a
30Gy	1.64 g	1.18 cd	2.24 de
40Gy	1.48 hi	1.07 f-h	2.11 g
		NIA-0819	
Control	1.72 f	1.06 f-h	2.13 fg
10Gy	1.89 cd	1.09 e-g	2.23 de
20Gy	2.11 a	1.23 bc	2.49 b
30 Gy	1.50 h	1.10 ef	2.21 de
40Gy	1.41 ij	1.11 ij	2.01 hi
		NIA- 2143	
Control	1.63 g	0.97 ij	2.08 gh
10Gy	1.80 e	1.03 g-i	2.18 ef
20Gy	1.86 de	1.15 de	2.43 bc
30Gy	1.40 j	1.02 hi	2.13 fg
40Gy	1.32 k	0.94 j	1.95 i

Table. 2 Effect of different gamma radiation doses on plant regeneration, chlorophyll mutants, and number of plantlets

Gamma radiation doses	Plant regeneration	Chlorophyll mutants	Number of plantlets			
	NIASGS- 571					
Control 10Gy	220 cd 300 b	10.00 fg 14.60 cd	121 d 129 b			
20Gy	320 a	16.20 с	134. a			
30Gy	180 d-f	19.60 b	118 ef			
40Gy	100 g-i	22.80 a	113 gh			
	Ν	IA- 0819				
Control	140 e-h	7.00 h	114 g			
10Gy	220 cd	8.20 gh	120 de			
20Gy	280 с	11.20 ef	124. c			
30Gy	160 d-g	13.00 de	112 gh			
40Gy	80 hi	15.80 с	111 h			
	NI	A-2143				
Control	80 hi	11.60	117 f			
10Gy	140 e-h	6.60 h	124 c			
20Gy	200 de	8.20 gh	129 b			
30Gy	120 f-h	10.00 fg	114.g			
40Gy	40 i	5.80 h	109 i 12			

Effect of different concentrations of indole-3-butric acid on root induction in sugarcane

Concentrations	NIASGS-571	NIA-0819	NIA-2143
¹ / ₂ MS	+	+	_
¹ / ₂ MS + 2.00 IBA mg L ⁻¹ + 4 %	++++	+++	++
sucrose			
¹ / ₂ MS + 1.00 IBA mg L ⁻¹ + 6 %	++	++	+
sucrose			

-No root, + weak root, ++ better root, +++ good rooting, ++++ excellent rooting

Callus before irradiation

Callus (before irradiation): Dry nodular compact and highly regeneration callus

Callus after one month of irradiation

30GY

40 GY

Morphologically well developed yellowish white type of callus, compact and dry nodular, capable of plant regeneration.

A friable non –regeneration callus globular non compact after one month gamma irradiation.

Callus proliferation after irradiation

After 6 weeks of the irradiated callus proliferation under 10, 20, 30, and 40 Gy of gamma radiation

Chlorophyll mutants

Chlorophyll variants.

Regeneration

Regeneration form irradiated callus after 12 weeks of growth in 5th subculture on MS medium containing 2.00 mg L⁻¹ IBA + 2.00 mg L⁻¹ IAA+ 2.00 mg mg L⁻¹ Kin

Rooting plantlets

Root formation on MS medium containing 2.00 mg L⁻¹ IBA. The plantlets with well developed shoots and roots.

Plantlets in the earthen pots

Transplantation in the field

Field Evaluation

Field Evaluation

- Randomized complete block design with three replications.
- Row to row and plant to plant distance: 1 m.
- Different quality related and quantitative traits recorded in November to February.
- Quantitative observations included plant height, number of tillers, stool weight, cane diameter, number and length of internodes, and cane yield.
- The quality-related parameters included Brix, sucrose and sugar yield.

TABLE 3. Effect of different gamma radiation doses on quantitative parameters through in vitro mutagensis in sugarcane

Varieties	Gamma radiation doses (Gy)	Plant height (cm)	Number of tiller plant ⁻¹	Stool weight (kg)
NIASGS-571	0	319.83d	9.00 b	9.00 a-c
	10	337.50b	9ab	9.63 b
	20	323.00c	9ab	10.00ab
	30	317.00d	8b	8.66 bc
	40	299.00e	9bc	9.13 a-c
NIA-0819	0	324.00c	9.00 b	9.00 a-c
	10	290.83e	9.50 ab	9.50 ab
	20	364.33 a	10.16 a	11.46 a
	30	247.83g	8.00 cd	8.00 cd
	40	237.50h	8.00 cd	8.00 cd
NIA-2143	0	247.50g	6.66 e	6.66 e
	10	246.83g	7.00 de	7.00 de
	20	299.50f	6.33 de	7.33 de
	30	245.17h	5.33 e	6.33 e
	40	223.00i	5.00 f	5.00 f ²⁴

Varieties	Gamma radiation doses (Gy)	Cane diameter (cm)	Number of internodes	Length of internodes (cm)
NIASGS-571	0	2.03 d	25.66 b-d	18.33 cd
	10	2.30 ab	28.33ab	21.00 a
	20	2.46 a	27.33 а-с	20.00 ab
	30	2.10 cd	29.00 ab	19.66 a-c
	40	2.10 cd	25.66 b-d	19.00 bc
NIA-0819	0	2.16 b-d	24.33 с-е	17.00 de
	10	2.26 a-d	28.33 ab	21.00 a
	20	2.36 a-c	29.66 a	21.00 a
	30	2.13 b-d	26.00 b-d	19.36 a-c
	40	2.36 a-c	24.00 с-е	18.70 bc
NIA-2143	0	2.13a- d	20.33 f	14.00 gh
	10	2.30 b-d	22.00 ef	16.00 ef
	20	2.03 d	22.00 ef	15.00 fg
	30	2.40 ab	22.00 ef	13.33 h

Table 5. Effect of different gamma radiation doses on quality-related characters in sugarcane

Varieties	Gamma radiation doses (Gy)	Brix (%)	Sucrose (%)	Sugar yield (t ha ⁻¹)	Cane yield (t ha ⁻¹)
NIASGS-571	0	16.83g	11.41 b-d	6.10b-d	90.00 a-c
	10	16.25 g	12.76 ab	7.42 b	100.00a
	20	18.18d	11.13b-d	7.53 ab	96.33ab
	30	16.60fg	12.70bc	7.28 ab	91.33 а-с
	40	17.78cf	11.94 b-d	6.34 а-с	80.67 bc
NIA-0819	0	16.08 g	12.00 b-d	6.73 a-c	90.00 a-c
	10	17.20 c-f	10.84 d	6.56 a-c	95.00 ab
	20	16.78 g	12.42 bc	7.21 ab	101.67 a
	30	15.86 g	11.39 b-d	5.15 c-d	80.00cd
	40	16.60fg	11.04 cd	6.41 а-с	70.00 d
NIA-2143	0	18.07 e	11.38 b-d	5.22 ef	66.67 e
	10	18.61 c	12.34 b-d	6.67 с-е	70.00 de
	20	18.09 e	12.46 b-d	6.34 d-f	73.33 de
	30	19.61 a	14.43 a	8.42 a	63.33 e
	40	19.32 ab	12.54 a-c	6.63 f	56.00 f

Conclusion

- Maximum callus induction was observed in NIASGS-571 at 20Gy and 10Gy, and minimum callus was recorded in NIA-2143 at 40Gy.
- > The maximum plantlets were regenerated at 20Gy, and minimum number of plantlets regenerated in NIA-2143 40Gy.
- > The frequency of chlorophyll variants was highest in NIASGS-571 and NIA-2143 at 40Gy.
- Maximum rooting was observed in NIASGS-571, followed by NIA- 0819 on media containing MS¹/₂ + 2.00 mg 1⁻¹ IBA + 4 % sucrose.
- > The induced mutagenesis of sugarcane genotypes in the study resulted in significant differences among the mutants.
- > 20Gy treated plants of NIA-0819 produced highest cane yield, whereas NIA-2143 (30Gy) recorded the highest sugar yields.
- > The gamma radiation doses of 30Gy and 40Gy showed negative effect on the cane yield in all varieties.
- > As sugarcane is a vegetatively propagated crop and has ratooning ability, the agronomic data indicates that *in vitro* mutagenesis can be employed for sugarcane improvement.

-